Shift toward Mechanical Isolation of Adipose-derived Stromal Vascular Fraction: Review of Upcoming Techniques
نویسندگان
چکیده
Standard isolation of adipose stromal vascular fraction (SVF) requires the use of collagenase and is considered more than "minimally manipulated" by current good manufacturing practice requirements. Alternatively, nonenzymatic isolation methods have surfaced using physical forces to separate cells from the adipose matrix. The purpose of this study was to review the literature on the use of mechanical isolation protocols and compare the results. The implication for use as a standard procedure in practice is discussed. METHODS A systematic review of the literature was performed on mechanical isolation of SVF with a search of six terms on PubMed and Medline databases. One thousand sixty-six articles were subject to evaluation by predetermined inclusion and exclusion criteria. RESULTS Two level 2 evidence articles and 7 in vitro studies were selected. SVF was isolated using automated closed systems or by subjecting the lipoaspirate to centrifugation only or by shaking or vortexing followed by centrifugation. Six articles reported isolation in laboratory settings and three inside the operating room. Stromal vascular cells expressed CD34, and CD44, CD73, CD90, and CD105, and differentiated along adipogenic and osteogenic lineages. When compared with enzymatic methods, mechanical isolation required less time but yielded fewer cells. Both case-control studies reported improved volume retention with cell-supplemented fat grafts for breast reconstruction. CONCLUSIONS Mechanical isolation methods are alternatives to circumvent safety issues posed by enzymatic protocols. However, randomized comparative studies with long-term clinical outcomes using mechanically isolated stromal vascular cells are needed to identify their ideal clinical applications.
منابع مشابه
Adipose derived stromal vascular fraction improves early tendon healing: an experimental study in rabbits
Tendon never restores the complete biological and mechanical properties after healing. Bone marrow and recently adipose tissue have been used as the sources of mesenchymal stem cells, which have been proven to enhance tendon healing. Stromal vascular fraction (SVF), derived from adipose tissue by an enzymatic digestion, represents an alternative source of multipotent cells, which undergo differ...
متن کاملSuccessful management of an equine carpal chip fracture by intra-articularly injected adipose-derived stromal vascular fraction after arthroscopic removal
Carpal chip fractures are common causes of lameness in racehorses. Due to disadvantages in surgical management, adjuvant treatment modalities are usually necessary. Adipose-derived stem cells (ADSCs) have the potential to differentiate into other cell types including bone and cartilage cells. Adipose-derived stromal vascular fraction (SVF) is produced during ADSCs isolation from adipose tissue....
متن کاملEffects of Uncultured Adipose Derived Stromal Vascular Fraction on Tendon Healing in Rabbits: A Histological and Immunohistochemical Study
Objective- To evaluate the potential effects of uncultured adipose derived stromal vascular fraction on tendon healing. Design- Prospective descriptive study. Animals- Twenty five adult male New Zealand white rabbits, weighing 2.5-3.0 kg were used. Five rabbits were used as donors of adipose tissue and the rest were divided into control and treatment groups. Procedures- The injury model was ...
متن کاملThe Long-term Effects of Uncultured Omental Adipose-derived Nucleated Cells Fraction and Bone-marrow Stromal Cells on Sciatic Nerve Regeneration
Objective- Adipose tissue is an appropriate source for isolation of cells with stem-cell–like properties. In the present long-term study, the effects of the omental adipose-derived nucleated cells (OADNCs) fraction were compared to those of the undifferentiated cultured bone marrow stromal cells (BMSCs) on sciatic nerve regeneration. Design- Experimental in vivo study. Animals- Fift...
متن کاملAdvances in adipose-derived stem cells and cartilage regeneration: review article
The cartilage is a connective tissue that, due to the strength of its extracellular matrix, allows the tissue to tolerate mechanical stress without undergoing permanent deformation. It is responsible for the support of soft tissues and due to its smooth surface and elasticity, gives the joints the ability to slip and bend. excessive weight, excessive activity, or trauma can all cause cartilage ...
متن کامل